Hiver 2018

Analyse d'images IMN 259

Transformée de Fourier appliquée à l'imagerie numérique

Par Pierre-Marc Jodoin

2

Transformée de Fourier 2D

$$\Im[f(x)] = F(u) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux} dx$$

$$\mathfrak{I}^{-1}[F(u)] = f(x) = \int_{-\infty}^{\infty} F(u)e^{j2\pi ux} du$$

Cas 2D

$$\Im[f(x,y)] = F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi ux} e^{-j2\pi vy} dx dy$$

$$\mathfrak{I}^{-1}[F(u,v)] = f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v)e^{j2\pi ux}e^{j2\pi vy}dudv$$

où *x,y* sont des coordonnées **spatiales** et *u,v* des coordonnées **spectrales**

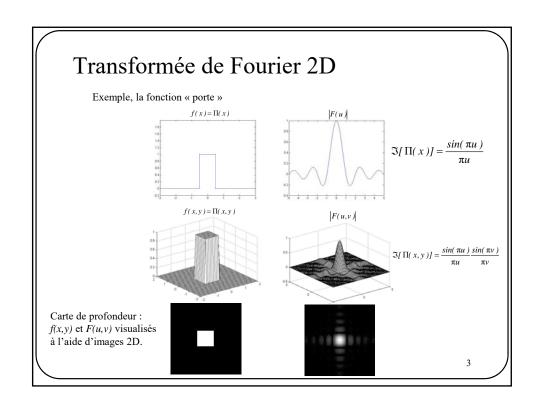
$$F(u,v) = Re[F(u,v)] + jIm[F(u,v)] = \underline{R(u,v)} + j\underline{I(u,v)}$$

$$F(u,v) = |F(u,v)|e^{j\theta(u,v)}$$
 (Réelle) (Imaginaire)

$$\theta(u,v) = arctan(I(u,v)/R(u,v))$$
: Phase

$$|F(u,v)| = \sqrt{R(u,v)^2 + I(u,v)^2}$$
 : Spectre d'amplitude

$$\left| F(u,v) \right|^2 = R(u,v)^2 + I(u,v)^2$$
 : Spectre de puissance



TF d'un signal discrétisé

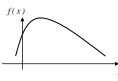
TF discrète 1D

Cas continu

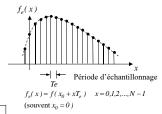
$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux} du$$

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{j2\pi ux} dx$$

Cas discret



Échantillonneur (appareil numérique photo, vidéo, audio)



$$F_e(u) = \frac{1}{N} \sum_{x=0}^{N-1} f_e(x) e^{-j2\pi x \frac{u}{N}}$$

$$f_e(x) = \sum_{u=0}^{N-1} F_e(u) e^{j2\pi \frac{u}{N}x}$$

$$f_e(x) = \sum_{u=0}^{N-1} F_e(u) e^{j2\pi \frac{u}{N}x}$$

$$x = 0, 1, 2, ..., N - 1$$

$$u = 0,1,2,...,N-1$$

TF discrète 1D

Cas continu

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi ux} du$$

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{j2\pi ux} dx$$

Cas discret

Pour alléger la notation et rester conforme avec le livre de Gonzalez et Woods on dira désormais:

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-j2\pi x} \frac{u}{N}$$
$$f(x) = \sum_{u=0}^{N-1} F(u) e^{j2\pi \frac{u}{N}x}$$

$$f(x) = \sum_{n=0}^{N-1} F(u) e^{j2\pi \frac{u}{N}x}$$

TF discrète 2D

Cas continu

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dxdy$$
$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} dudv$$

Cas discret

$$F(u,v) = \frac{1}{NM} \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f(x,y) e^{-j2\pi(\frac{ux}{N} + \frac{vy}{M})}$$

$$u = 0,1,2,...,N-1$$

$$v = 0,1,2,...,M-1$$

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{M-1} F(u,v) e^{j2\pi(\frac{ux}{N} + \frac{vy}{M})}$$

$$x = 0,1,2,...,N-1$$

$$y = 0,1,2,...,M-1$$

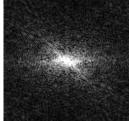
Note: les images qu'on traite sont parfois carrées, donc N==M

TF discrète

Exemple

z, y)

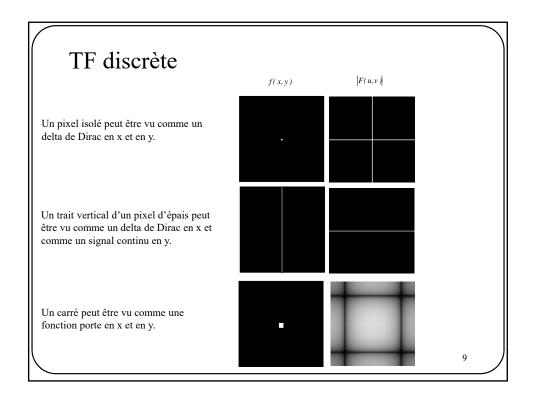
F(u,v)

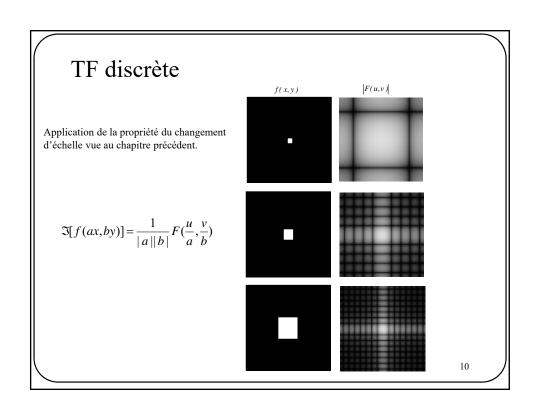


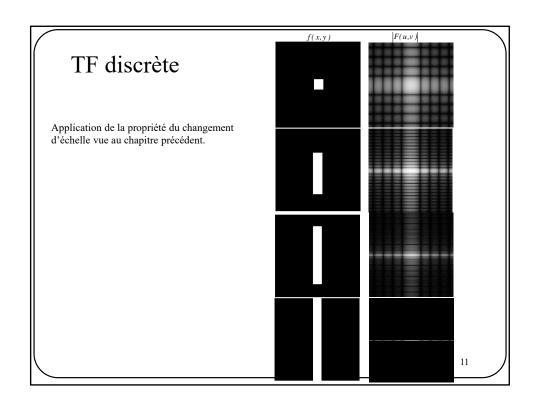
 $255\log(1+|F(u,v)|)$

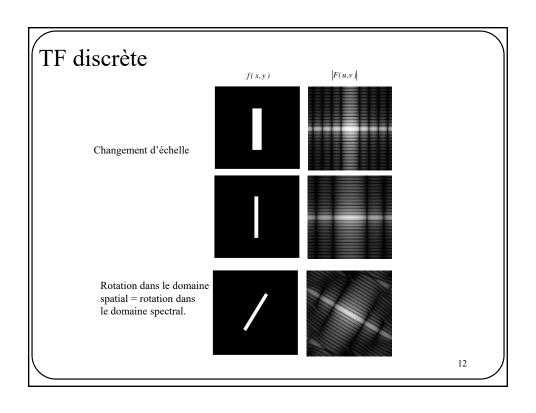
Note:

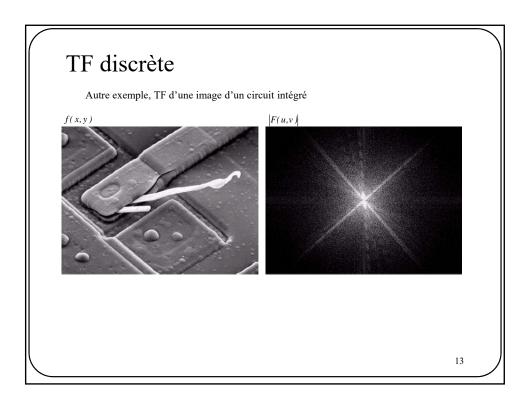
- On affiche généralement le module de la TF |F(u,v)|
- Puisque les hautes fréquences sont beaucoup plus faibles que les basses fréquences, on utilise fréquemment un recalage logarithmique: $k \log(1 + |F(u, v)|)$
- On positionne l'origine au centre de l'image à l'aide d'un recalage cyclique.
- Les propriétés de la TF2D sont les mêmes que pour la TF 1D. 8



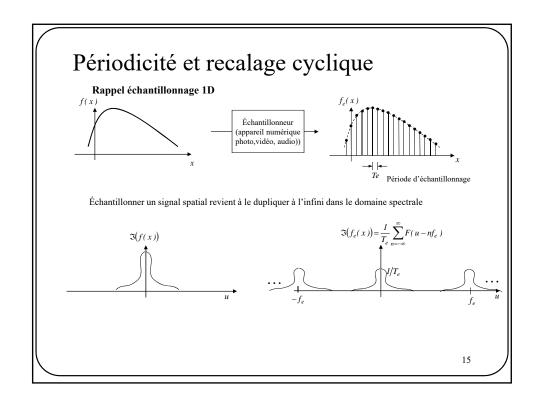


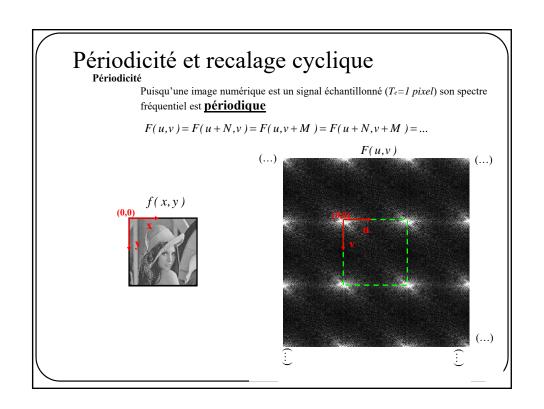






Périodicité et recalage cyclique





Périodicité et recalage cyclique

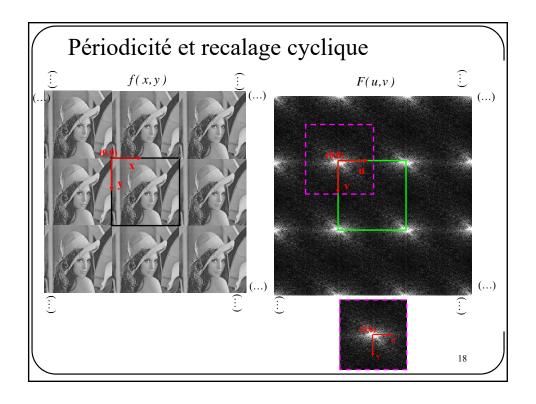
Périodicité

Puisqu'une image numérique est un signal échantillonné ($T_e=1$ pixel) son spectre fréquentiel est **périodique**

$$F(u,v) = F(u+N,v) = F(u,v+M) = F(u+N,v+M) = ...$$

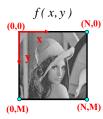
De façon équivalente, puisque F(u,v) est un signal échantillonné (c'est un spectre de raies), alors l'image spatiale f(x,y) est aussi un signal **périodique**

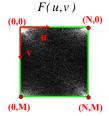
$$f(x,y) = f(x+N,y) = f(x,y+M) = f(x+N,y+M) = ...$$



Périodicité et recalage cyclique

Puisque le centre géométrique (0,0) d'une image est [presque] toujours centré sur le pixel supérieur gauche, alors l'origine (0,0) de F(u,v) est aussi centrée en haut à gauche.





Pour ramener l'origine de F(u,v) au centre de l'image, il faut translater F(u,v) par (N/2,M/2) C'est ce qu'on appelle un **recalage cyclique**.

19

Périodicité et recalage cyclique

Suivant la propriété de la translation exposée au chapitre précédent:

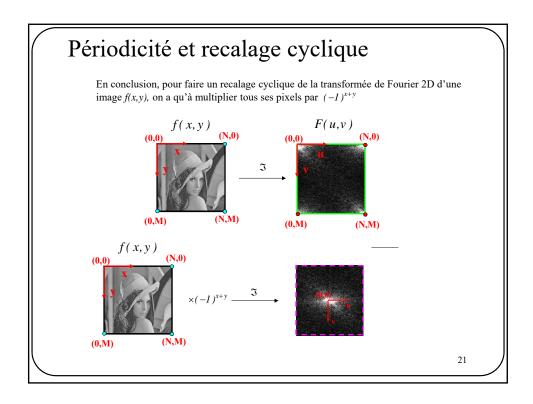
$$F(u-a,v-b) \Leftrightarrow f(x,y)e^{j2\pi(\frac{ax}{N} + \frac{by}{M})}$$

Puisque a=N/2 et b=M/2 alors

$$\begin{split} F(u-N/2,v-M/2) &\Leftrightarrow f(x,y)e^{j2\pi(\frac{Nx}{2N} + \frac{My}{2M})} \\ &= f(x,y)e^{j\pi(x+y)} \\ &= f(x,y)(\cos(\pi(x+y)) + j\sin(\pi(x+y))) \\ &= f(x,y)\cos(\pi(x+y)) \\ &= f(x,y)(-1)^{x+y} \end{split}$$

car

$$cos(\pi(x+y)) = \begin{cases} I & lorsque x + y est pair \\ -I & lorsque x + y est impair \end{cases}$$



Convolution discrète

Convolution discrète

La convolution

Cas continu

$$(f*h)(x) = \int_{-\infty}^{\infty} f(t)h(x-t)dt$$

$$(f*h)(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t,r)h(x-t,y-r)dtdr$$
 2D

Cas discret

$$(f*h)(x) = \sum_{t=-\infty}^{\infty} f(t)h(x-t)$$
1D

$$(f * h)(x, y) = \sum_{r = -\infty}^{\infty} \sum_{t = -\infty}^{\infty} f(t, r)h(x - t, y - r)$$
 2D

Rappel théorème de la convolution

$$\Im((f * h)(x)) = F(u)H(u)$$
 et $\Im^{-1}((F * H)(u)) = f(x)h(x)$ 1D

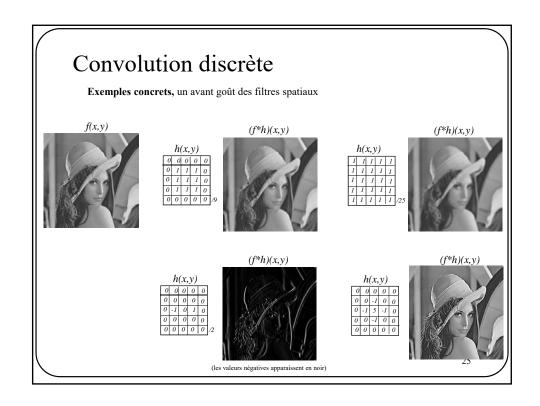
Note: ce théorème est valable pour les cas continu et discret

23

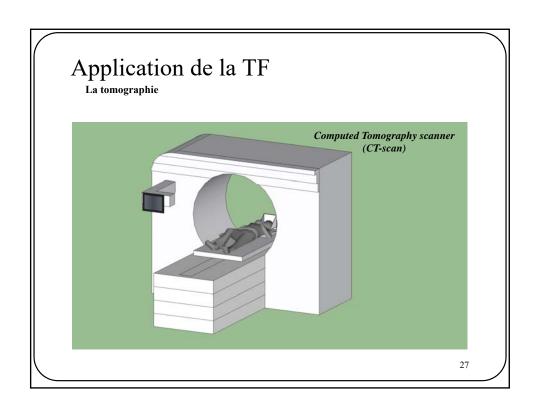
Convolution discrète

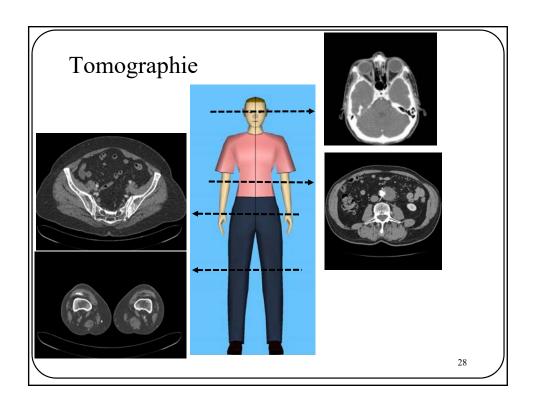
Cas 2D
$$(f*h)(x,y) = \sum_{r} \sum_{t} f(t,r)h(x-t,y-r)$$

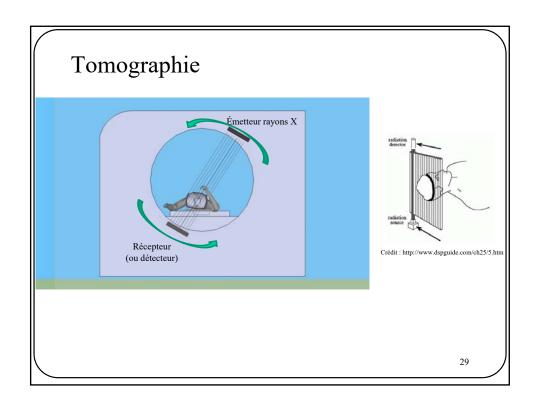
 $\begin{array}{c|ccccc}
\hline
-1 & 0 & & \hline
& 1 & 2 & & \hline
& 2 & 1 & & \\
\hline
& 1 & 2 & & & \hline
& 0 & -1 & & \\
\hline
& Réflexion en X & Réflexion en Y & \\
\end{array}$

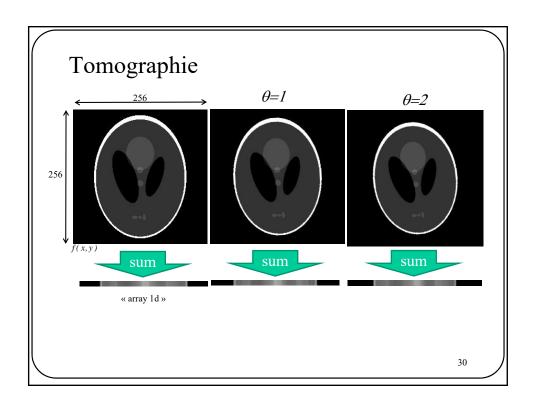


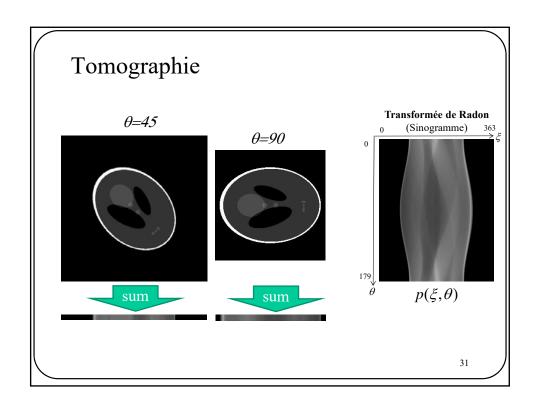
Tomographie

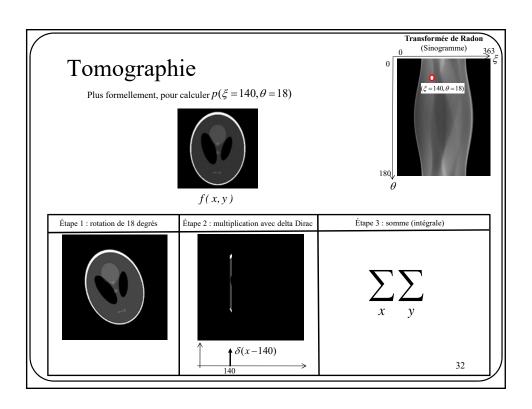


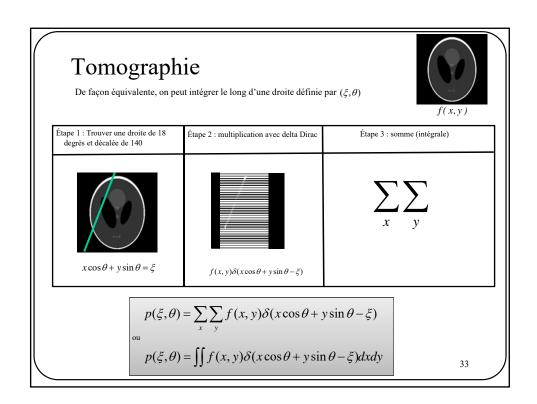


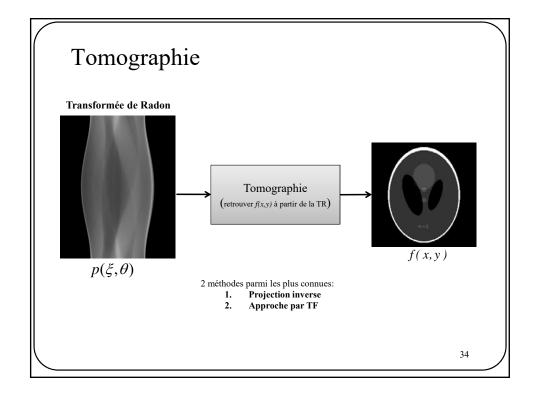


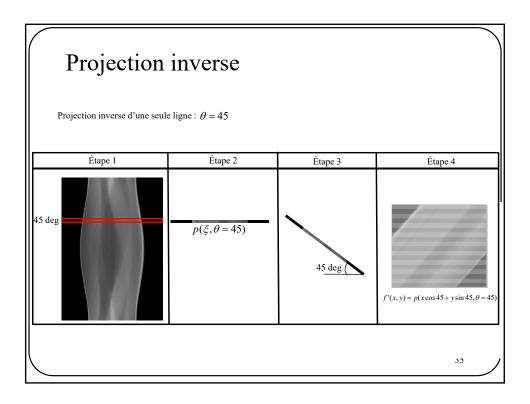


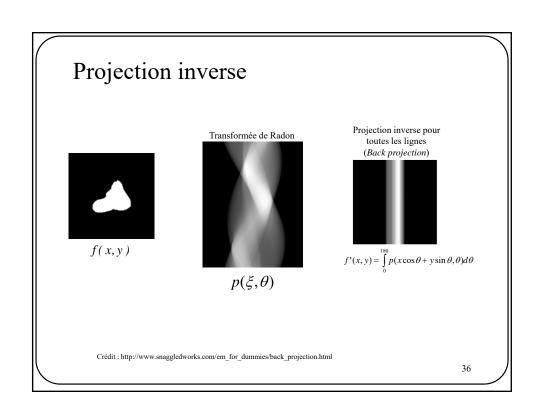


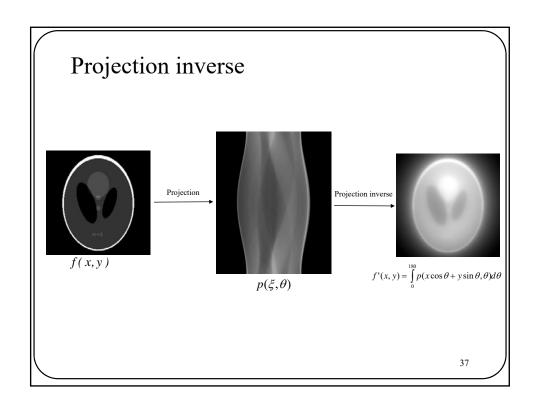


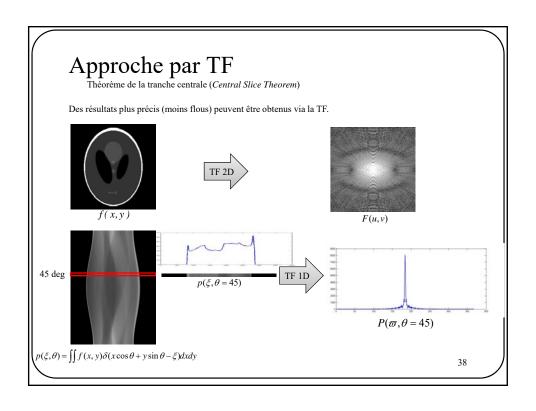




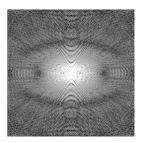






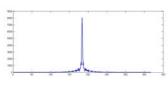


Approche par TF Théorème de la tranche centrale (Central Slice Theorem)



$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx dy$$

Approche par TF Théorème de la tranche centrale (Central Slice Theorem)



$$\begin{split} P(\varpi,\theta) &= \Im[p(\xi,\theta)] \\ &= \int p(\xi,\theta) e^{-j2\pi\varpi\xi} d\varpi \\ &= \int \Bigl(\iint f(x,y) \delta(x\cos\theta + y\sin\theta - \xi) dx dy \Bigr) e^{-j2\pi\varpi\xi} d\varpi \\ &= \iiint f(x,y) \delta(x\cos\theta + y\sin\theta - \xi) e^{-j2\pi\varpi\xi} d\varpi dx dy \end{split}$$

En vertu des propriétés du delta de Dirac $(f(x)\delta(x-a) = f(a))$

$$P(\varpi,\theta) = \iint f(x,y)e^{-j2\pi\varpi(x\cos\theta+y\sin\theta)}dxdy$$

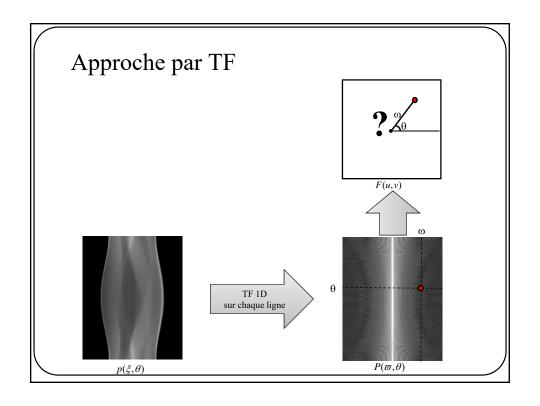
Approche par TF

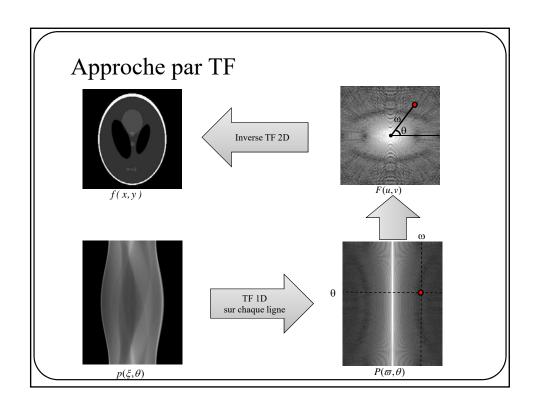
Théorème de la tranche centrale (Central Slice Theorem)

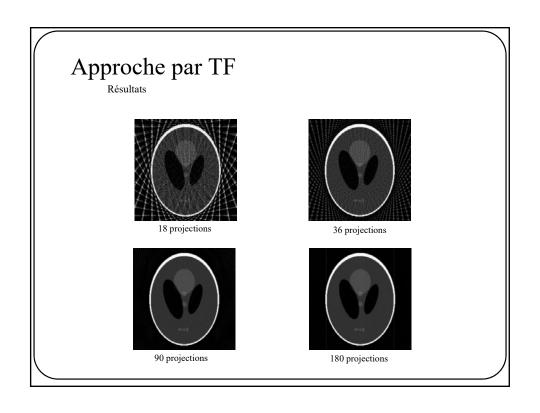
$$P(\varpi,\theta) = \iint f(x,y)e^{-j2\pi \varpi(x\cos\theta+y\sin\theta)} dxdy$$
Et en posant que $u = \varpi\cos\theta$ et $v = \varpi\sin\theta$, on réalise que $P(\varpi,\theta)$ est une droite dans l'espace fréquentiel de $F(u,v)$

$$P(\varpi,\theta) = \iint f(x,y)e^{-j2\pi(xu+yv)} dxdy$$

$$F(u,v) = \iint f(x,y)e^{-j2\pi(ux+vy)} dxdy$$
41

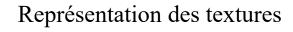




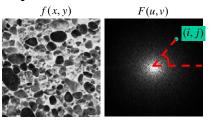


Caractérisation de textures

45

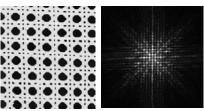


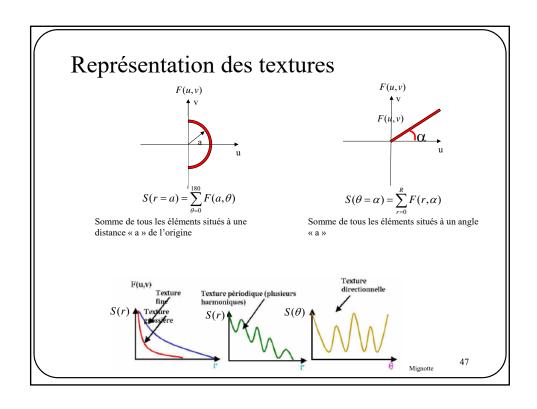
 $Représentation \ spectrale => {\it caractériser une texture sur la base de la forme de la T.F.}$

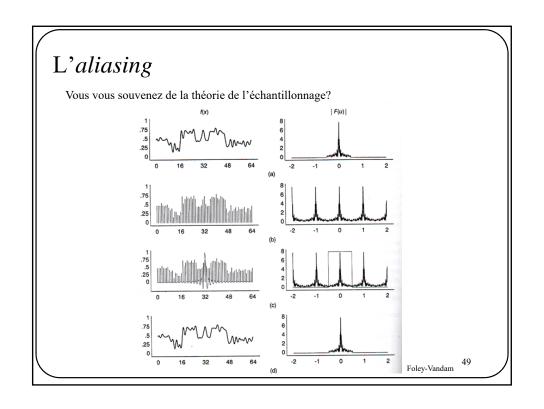


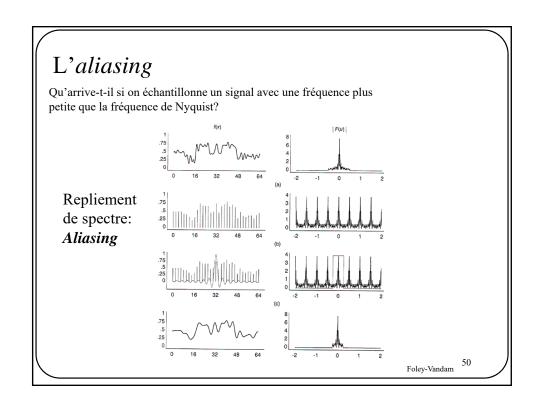
 $F(i,j) = F(r,\theta)$

r: distance à l'origine θ : angle d'élévation









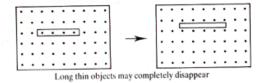
L'aliasing

Deux définitions classiques de l'aliassing :

1. Perte d'information causée par un échantillonnage de fréquence trop basse.

1er exemple: Voir la page précédente

2e exemple:



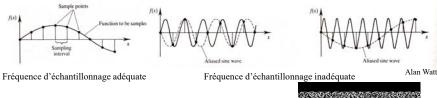
Alan Watt

5

L'aliasing

Deux définitions classiques de l'aliassing :

2. Induction de basses fréquences causée par un échantillonnage de fréquence trop basse.

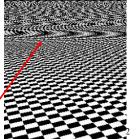


Silhouette edge in continuous two-dimensional image space

Simpled edge

Simpled edge

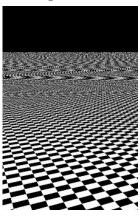
Effets de Moiré

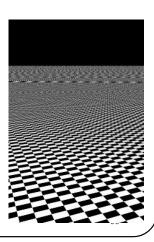


L'aliasing

Bien qu'il soit généralement impossible de résoudre le problème de *l'aliassing*, on peut tout de même en masquer les effets. Comment? Parmi les nombreuses façons de lutter contre *l'aliassing*, il en existe deux qui reviennent souvent.

1: Augmenter la résolution de l'image

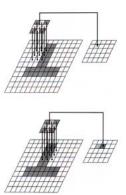




L'aliasing

Bien qu'il soit généralement impossible de résoudre le problème de l'aliassing, on peut tout de même en masquer les effets. Comment? Parmi les nombreuses façons de lutter contre *l'aliassing*, il en existe deux qui reviennent souvent.

2: Appliquer un filtre passe-bas. C'est ce qu'on appelle un processus d'*antialiassing*. C'est d'ailleurs ce que le *Mip Mapping* fait.



Crédit : Alan Watt

Les faits saillants	
1. TF d'un signal 2D échantillonné	$F(u,v) = \frac{1}{NM} \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f(x,y) e^{-j2\pi(\frac{ux}{N} + \frac{vy}{M})}$ $f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{M-1} F(u,v) e^{j2\pi(\frac{ux}{N} + \frac{vy}{M})}$
2. Périodicité	Puisqu'une image $f(x,y)$ et sa TF $F(u,v)$ sont des signaux échantillonnés, alors $f(x,y)$ et $F(u,v)$ sont des signaux qui se répètent à l'infini.
3. Recalage cyclique	Pour que l'origine de $F(u,v)$ apparaisse au centre de l'image, il faut multiplier les pixels de $f(x,y)$ par $(-1)^{x+y}$
4. Convolution discrète 2D	$(f*h)(x,y) = \sum_{r} \sum_{t} f(t,r)h(x-t,y-r)$
5. Théorème de la convolution	$* \xrightarrow{\mathfrak{T}} \times \text{et} \times \xrightarrow{\mathfrak{T}} *$
6. Tomographie	$p(\xi,\theta) = \iint f(x,y)\delta(x\cos\theta + y\sin\theta - \xi)dxdy$
7. Textures	$S(r = a) = \sum_{\theta=0}^{180} F(a, \theta)$ $S(\theta = \alpha) = \sum_{r=0}^{R} F(r, \alpha)$
8. Aliassing – repliement de spectre	$f_e \ge 2 f_{ m max}$